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ELASTOPLASTIC TORSION THEORY FOR WHISKER CRYSTALS 

I. L. Bataronov and A. M. Roshchupkin UDC 539.384/385.001:539.216.1 

i. Introduction. Plastic deformation of crystals is accompanied by the complex evolu- 
tion of internal elastic stress fields caused by self-consistent movement of conglomerates 
of crystal defects at different structural levels of deformation [i]. A specific role in 
formation of these elastic fields applies to the crystal surface [2] which thus appears to be 
incorporated in a number of factors which affect movement of the defect structure. In view 
of this with the microscopic nature of some of the linear dimensions of a crystal in the 
kinetics of plastic strain the structural level of deformation, whose size is comparable with 
the size of a crystal, becomes decisive. In this respect whisker crystals (WC) are unique 
model objects for studying in a "pure form" features of the development of plastic deformation 
in assemblies of defects of different hierarchical degrees of structural levels. In an ex- 
perimental respect torsion and bending are convenient methods for studying the ductility of 
WC [3], and the dislocation structure which forms is satisfactorily revealed by direct meth- 
ods [4]. It is of interest to obtain general relationships which connect the macroscopic 
reaction of a WC (i.e., the amount of torsion) to dislocations present within it with char- 
acteristics of the dislocation structure which emerges as a basis for theoretical analysis of 
the plastic behavior of WC in torsion and also in the general case in bending. 

In the present work in an approximation of macroscopically average description of the 
dislocation structure elastic torsion, and as a generalization bending, of whisker crystals 
caused by presence of dislocations in a crystal are considered. Relationships are found 
from the condition for minimum elastic energy which determine the macroscopic reaction of a 
whisker crystal to dislocations introduced into it. 

2. Statement of the Problem. Finding actual elastic dislocation fields located close 
to a surface is a very complex mathematical problem [2] for which there is not yet a satis- 
factory solution. In particular, the problem of torsion for a WC containing dislocations 
is currently solved in a general form only for the case of rectilinear screw dislocations 
parallel to the crystal axis. As shown by Eshelby [2], the twist angle for WC ignoring edge 
effects at is ends is expressed in terms of the value of the Prandtl torsion function at 
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points of the crystal cross section through which dislocations pass. The possibility of ob- 
taining an analytical result in this case is explained by the two-dimensional nature of the 
elastic problem which arises due to translational invariance of the dislocation structure in 
question with respect to arbitrarydisplacement along the WC axis. It is possible to make 
progress on this question if macroscopically averaged description of the dislocation struc- 
ture is used [5]. In view of this we turn attention to the fact that translational invariance 
is inherent for elastic stress fields in WC subject to torsion. With microscopic considera- 
tion of the dislocation structure forming in it with torsion it is naturally uniform along 
the crystal axis. However, as a result of external action, which is characterized by the 
property of translational invariance, on average it should be similar. Here longitudinal 
dimension As of a physically infinitely small element of volume AV [5], for which averaging 
of the microscopic inhomogeneities of the dislocation structure which develops along the WC 
axis should be performed, may be related in different ways with its (crystal) transverse 
dimensions R. It is evident that the two-dimensional nature of the problem in question 
arises when 

Al << a .  ( 2 . 1 )  

In  t h e  o p p o s i t e  c a s e  t h e  p r o b l e m  has  a m a r k e d l y  t h r e e - d i m e n s i o n a l  c h a r a c t e r  and a n a l y s i s  o f  
it presents well-known difficulties. 

Furthermore it is noted that torsional strain in a macroscopic sense is a special case 
of the more general deformation of rods with which there is rotation of neighboring rod cross 
sections around an arbitrary axis (in the case of torsion coinciding with the crystal axis). 
Vector ~'serves as a macroscopic characteristic of this deformation whosecomponent directed 
along the rod axis is the twist angle, and the component perpendicular to the axis character- 
izes rod bending so that in the general case [6] 

e ~ d~/dl, ( 2 . 2 )  

where d~ is angle of rotation of two neighboring transverse rod cross sections separated from 
each other by distance ds along the rod length. In the case of pure bending the elastic 
stressed state which arises in the rod does not depend on coordinates read along the rod 
axis [6], which together with (2.2) gives rise to physical analogy for these strains, and 
which suggests combined consideration of them. 

Assuming that condition (2.1) is fulfilled, we consider the problem of torsion and pure 
bending for a WC with dislocations securely fastened at one end and subject at the other to 
the action of force moment M. As is well known from mechanics [7], reaction of a body to an 
external force does not depend on whether there are internal stresses in it or not. This 
situation makes it possible to distinguish torsion and bending [~(.u caused by dislocation, and 
torison Q~) .... 3Iz,/C and bending ~25 ~) Igf~3l[(E caused by an external moment (C is WC torsional 
stiffness, EI~8 is bending stiffness, E is Young's modulus, I~ is tensor of moments of 
inertia for WC cross section [6] (here and subsequently Greek letters signify two-dimensional 
indices taking the values 1 and 2, and axis z of the coordinate system coincides with the 
crystal axis)). Vector ~(a) may be calculated by proceeding from the condition of minimum free 
energy for elastic deformation of a crystal in equilibrium with a fixed dislocation position. 
For this purpose it is only necessary to express this energy in the form of an appropriate 
functional for the WC cross section angle of rotation. It is noted that this statement of 
the problem, based on introducing vector g~, in essence emerges from the semi-reverse St. 
Venant method [8], and as will be seen subsequently the assumption made above is justified. 

3. Elastic Energy of a WC with Dislocations as a Functional of the Macroscopic Param- 
eters of Its Bending and Torsion. In solving the variational problem it should be borne 
in mind that WC reaction to dislocations present within it comes down not only to torsion and 
bending (which is only the regular macroscopic part of this reaction), but also to macro- 
scopic lattice distortion in the crystal surrounding the dislocation. Elastic energy E 0 con- 
nected with distortion does not depend on ~(~)and therefore it may be omitted in the varia- 
tional problem in question without detriment. In this case only the remaining part of El2 of 
the WC elastic strain energy is subject to analysis, and this is easy to establish by pro- 
ceeding from the following reasoning in the spirit of Eshelby [7, 9]. Mentally we separate 
in a crystal of infinitely large dimensions the WC in question with dislocations and we cut 
it out by substituting the action of the rest of the crystal by assembled forces at the WC 
surface (it is necessary to close over the WC surface the ends of which emerge at the sur- 
face). With removal of these forces, which is equivalent to applying external surface forces 
of an opposite sign, as a result of internal stress relaxation the WC acquires some torsion 
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and it bends. Now by considering this torsion and bending as a result of external action we 
write energy E12 connected with it directly in the form of the sum of energy E 2 of elastic 
torsional and bending strains equal, respectively, to C [ ~ ~  and ~'l oo('~176 calculated ~ - ~  ~ l ~ 

per unit length of WC [6], and the reaction energy E l corresponding to ~(d) of stress field 
Pik with dislocations in the WC. 

At first sight it may appear strange that in the expressions for E~2 the term E I is 
considered which reflects the reaction between itnernal and external stresses since as is 
well known [7] the contribution of elastic energy in this reaction equals zero. However, it 
is necessary to bear in mind that stresses Pik are not generated by sources external with 
respect to the WC, and they are only a regular macroscopic part of internal stresses of the 
dislocations themselves liberated on a microscopic background rik. Therefore, in fact energy 
E l describes the reaction between two subsystems Pik and Tik of internal stresses in a crystal 
caused by the same source, and consequently equality to zero of this energy does emerge from 
anywhere in the general case. In the mental experiment described above, which is nothing 
more than a convenient procedure, the occurrence of the second term in E12 is explained by 
the necessity in considering potential energy of including the "external" effect [7] which 
here is responsible for E~ [7]. This point of view is convenient in the respect that in 
calculating E I it makes it possible to use a known equation directly for the energy of dis- 
location loop reaction with an external elastic stress field [7]. In view of the additive 
nature of the contribution made to the total reaction energy El by all of the dislocations 
existing in the WC we write this energy as a sum 

In each of the terms presented integration is performed with respect to arbitrarily selected 
surface S d resting on the corresponding dislocation loop d with Burgers vector b(a), * and 
angular brackets signifying averaging values within them with respect to generalized coor- 
dinates of dislocations. By following the general scheme in [I0] we consider a configuration 
space formed by population Q of generalized coordinates of all of the dislocations, and we 
introduce into it probability density f(Q) of configurational points which satisfy the nor- 
malization condition /f(Q)dQ = i. Then this operation of statistical averaging is accom- 
plished formally by calculating the following integral with respect to the configurational 
dislocation space: 

(...) ~- ~ .../(Q)dQ. (3 .2)  

By means o f  t he  D i r ac  d e l t a  f u n c t i o n  a t  s u r f a c e  S d [9] 

t%i (SO) = S (3 ( r - -  r') dS'~ 
Sd  

surface integrals which feature in Eq. (3.1) may be reduced to integrals taken with respect 
to volume V 0 of the WC. Then by changing in this equation the order of summing and integra- 
tion we rewrite it in the form 

E 1 ~ - -  i J ih l l i t r  , 

where the notation introduced in [6] is used 

~..h (~) = ~ T t  [& 6%),.k + 6k (,%) 
d 

where the 6-shape is a feature of the strain tensor formally relating to the stress field 
around a dislocatin separate at surface S d. Since probability density f(Q) does not depend 
on spatial coordinates, then there is permutability of statistical averaging operation (3.2) 
with spatial differentiation and integration [i0]. Considering this in (3.3) we write 

(s) E, =-- y l)~k<uik>dV. ( 3 . 4 )  
V o 

*In order to avoid misunderstandings connected with writing Eq. (3.1) it is noted that the 
definition of the Burgers dislocation vector used in this work [6] differs in sign from the 
definition adopted ~n [7]. 
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First we consider slight bending of a WC (when the radius of curvatureof the WC curved 
axis is considerably greater than its length [6]) by stipulating a particular case of severe 
bending. In fulfilling the smallness condition with respect to rotation of WC cross sections 
distant from each other by a distance of the order of its transverse dimensions, the depen- 
dence of elastic stresses Pik on vector ~ is linear in nature: 

P ~  ~: % ~ m .  (3.5) 

According to the conclusions of classical torsion and slight bending theory for thin rods 
[6, 8] components which are uniquely distinguished from zero with respect to indices i and k 
of tensor Xikm are 

%~zz:--%z~z--: 2Vez~OX/Ox~, %zz~ := Eez~X~" (3.6) 

Here p is crystal shear modulus; eik s is Levi-givita tensor; X is Prandtl stress function 
satisfying the equation 82X/Sx ~ + 8~X/Sy ~ = -I and boundary condition X = 0 at the contour 
of the WC cross section, and the origin of the coordinate system is selected at the center 
of inertia of the WC cross section: 

I "x~dxdg = (j. ( 3 . 7 )  
,9 o 

Now by substituting (3.5) in (3.4) we separate in it integration with respect to area S O of 
WC cross section and we introduce the notation 

M$2 .( /,P\ = %zjf,~ \ ~7 / dx dy. 
S O 

T h e  r e a c t i o n  e n e r g y  i n  q u e s t i o n  i s  p r e s e n t e d  i n  t h e  f o r m  o f  a n  i n t e g r a l  

L 0 

s;, : - . t "  -wl:')-'->; '> d,., 
o 

( 3 . 8 )  

taken for length L 0 of the WC. By adding to this energy with E 2 we have the following ex- 
pression for the part of WC elastic strain energy sought connected with its macroscopic reac- 
tion on the dislocations present: 

Lrj 

j 

4. Solution of the Variational Problem of Macroscopic Bending and Torsion of a WC with 
Dislocations. From the condition of minimum energy (3.9) in equilibrium by varying with re- 
spect to vector components the rotation angle ~(d) for WC transferse sections taking account of 
(2.2) we have [6] 

L 0 

- -  - -  - -  ~I~,~ ) 6m ~176 dz -4- 
0 

L o 

+ - M P )  = o, 

o 

where in the first and third terms their value is taken at the unsecured end of the WC. In 
view of arbitrary variation of 6q~[ ~;' both along the WC length and at the unsecured end from 
the equality it follows that minimum energy Ez2 is reached with 

~Q~d) = 3l~d)/C. (.~'0 , - l ~ , ( d ) l ~ .  ( 4 . 1 )  

Furthermore we introduce (generally speaking asymmetrically) tensor Jik according to the 
definition 

Jzz 4~ aJl~ ]~z Jzo~ O, 

by means of which we write (3.6) as 

%UI~ := ESz(iej)~TfTJ,h/Ox~s.. 

(4.2) 

(4.3) 
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Now by substituting (4.3) in (3.8) we find an equation for M (d) in the form 

M !  d) 

S o S o 

Here the first integral, being transformed by the Stokes theorem [6] into an integral for 
the length of the contour of the WC cross section, disappears in view of boundary conditions 
X = 0 at this contour and with fulfillment of the relationship 

where n is vector of the external normal to the contour line of the cross section. 
ation of the second integral leads to the equation 

(' ~ ,4, ~"'~ \ ' t ,  z l  J l l~O= E . )  d,~e,,~zi~- " . . . .  -d .rdy  (4 5) Oa.rz 
S 0 

We transform it by using determination of the dislocation density tensor: 

9U, = eu , , ,  ".4rl,'~}j&L'. ( 4 . 6 )  

which  c o r r e s p o n d s  t o  d e t e r m i n a t i o n  o f  t h i s  v a l u e  a d o p t e d  in  [ 6 ] .  H e r e  

,/,,~},, --= .I,~I, + ~%,~.;,,/;") ( 4 . 7 )  

is the basic field of plastic distortion including plastic rotation 

(4.4) 

Consider- 

d 

By s u b s t i t u t i n g  ( 4 . 7 )  in  ( 4 . 6 )  we f i n d  t h a t  
�9 ,~ / , ( s )  ! 

where the second term in the right-hand part is the tensor of Nye curvature [9]: 

A;i = ,",I: (1 _)6i,,:p, !. ( 4 . 9 )  

By a s s u m i n g  in  ( 4 . 8 )  t h a t  k = 3 and a v e r a g i n g  t a k i n g  a c c o u n t  o f  t h e  p e r m u t a b i l i t y  n o t e d  above  
for this operation with spatial differentiation we obtain 

,/ i~)\l~ " ~.s~,k ~!,',~ /h~. I-- (4. lo) 
In view of the suggested translational invariance of the average dislocation structure values 

(s) (s) <w i > and <Uik > do not depend on coordinate z, and consequently the corresponding partial 
derivatives in (4.10) equal zero. Finally Eq. (4.5) taking account of (4.2) may be written 
in the form 

"" - -  (' ,.. X i A ~ > ~ L ~ : d u '  

% (4.11) 
()(I f )  ] 
" ' ~  .... 1"~1~ ,) "1 ~1; t/"'-'~> (!,~ d ! l .  

S 0 

The tensor J~ used in (4.11) is determined by Eqs. (4.2) and boundary conditions (4.4) un- 
ambiguously since the number of independent components of tensor Ja$ exceeds the nm~ber of 
Eqs. (4.2). However, this is arbitrary in determining J~$ in view of the relationship 

6(l<,~>.6%. O. (4.12) 

which emerges  f rom ( 4 . 6 )  and ( 4 . 9 )  and i s  a c o n s e q u e n c e  o f  t h e  g e n e r a l i z e d  c o n s e r v a t i o n  r u l e  
for the Burgers vector [5, 6], and it does not affect the result of using (4.11). This is 
easy to demonstrate by using the identity 

o <I~'~,> dx'~ a:6P' ~ ' .16~ <fz6> = ez~z6 ~ d61~ ezev - -  ez,-z6 ~ , )  e~. v <A'zv> dxa, ( 4 . 1 3 )  
r 0 r 0 

where the integrability of form'e~v(K2v>dx ~ provides fulfillment of condition (4.12)~ % is 
an arbitrary vector in the plane of cross section. By substituting (4.13) in (4.111) and 
transforming the first integral by means of the Stokes theorem into an integral with respect 
to the line of the contour of the cross section, which disappears in view of (4.4), taking 
account of (4.2) we have 
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/ 

According to (4.12) the functional obtained does not depend on the integration path in the 
internal integral, and in view of (3.7) due to selection of r,, the ~(d) is determined with 
respect to <Kz~> unambiguously in this expression, and consequently in Eq. (4.11). Thus, 
relationship (4.11) establishes the connection sought between averaged dislocation structure 
characteristic (Nye curvature tensor) and the macroscopic reaction of the crystal to dis- 
locations introduced into it, and this reaction does not depend on the plastic prehistory of 
the crystal, but it is only determined by the specific dislocation distribution. 

5. Illustrative Examples. As important examples we consider some specific solutions. 

Dislocations parallel to the WC axis are characterized by generalized coordinate p, which 
is the radius-vector of a point at the plane of WC cross section through which a dislocation 
passes. Since the generalized coordinate in this case is invariant with respect to transfer 
of the coordinate system along the WC axis, then as a function of f(Q) it is possible to 
adopt (~(P0--P0). Then by taking account of (3.2) and (4.9), and considering that the vector of 
the tangent to the line of the dislocation is antiparallel to its Burgers vector, for a screw 
dislocation we obtain Kzz .... ; ''~ ~ --~DI_)6(p -- P0)- Then from (4.11) it follows that o~'S)=-- (2~tD/C)Z(P0), 
i.e., the well-known Eshelby result [2] for an axial screw dislocation. An axial edge dis- 
location only has components K~z differing from zero, and according to (4.11) it does not 
create bending and torsion which was also noted in [2]. 

In the case of a constant dislocation density taking account of the normalizing condi- 
tion for function f(Q) it emerges that(/fz~> == 0.'2)(%z--P,~- fO~s) (m,~i, <'A:.~> f%~ : <m~t. 

I Since C ~ gp Xd~:d~, . . . . . .  then the first equation of (4 Ii) takes the form <~(<0 = (I/2)(p~ -- IL~,,-- f'~). 

Whence torsion for screw dislocations parallel to the WC axis and having density p equals 
~('~) t , ' J . 2 ,  for dislocations perpendicular to the WC axis f.]~,O ..... ~ > ; , . ,  and it equals zero 
with the condition Pzz = Pxx + Pyy (for screw dislocations at an angle of 45 ~ to the crystal 
axis). In order to transform the second of relationships (4,11) it is necessary to multiply 
(4.2) by x s and to integrate the expression to the left in parts: 

e V I~c~'s) 
.z~?, ---~.~.~-" (t,:c dl! , e:~.l;,l i,~< (/,z d,~ I i' e--~xl:;-"l; C<.. d.>' (';{I' 

SO f~0 /Stl 

The first integral is transformed into an integral with respect to the contour line of the 
cross section and it disappears in view of (4.4) so that 

.f "1 ~l~ d.~' d!l = [ c~j~l:~.~..,',>.~'~ ~ d.~' d ! / =  /~.~;. 

Thus, for a macroscopic uniform dislocation density there is the relationship fg<0_,~ . \"~.~,/r<" 
which conforms with the known result of Nye [7, 9]. 

In conclusion it is noted that a change-over to the case of severe bending may be ac- 
complished in a similar way to that in [6] by introducing (local) coordinate systems in each 
WC cross section parallel to each other and an original system in an undeformed crystal ro- 
tating togetherwith cross sections with WC bending and twisting. Relationships (4.1) and 
(4.5), and consequently also (4.11) considered in a local coordinate system in the vicinity 
of a given WC cross section, remain valid with severe crystal bending. In contrast to bend- 
ing under the action of an external moment [6], dislocation bending of a WC is not accompanied 
by additional WC twisting. This situation is due to the fact that vector M (~) turns together 
with rotation of the cross section, whereas moment IV[ retains its orientation unchanged in 
space. 
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NUMERICAL STUDIES OF NONLINEAR WAVE PROCESSES IN A LIQUID AND A 

DEFORMABLE SOLID DURING HIGH-SPEED IMPACT INTERACTION 

V. A. Petushkov UDC 532.529+539.4 

Problems of hydrodynamic shock loading of deformable bodies are most often encountered 
in the study and prevention of the erosional failure of structures interacting with a liquid. 
Among the structures that are subject to high-speed shock loading by liquid particles are 
turbine blades operating in moist vapor and elements of air and space craft flying in rain 
or entering bodies of water. Bodies immersed in a cavitating liquid are also subjected to 
shock-wave loading. The local pressures on the surface of solids involved in such interac- 
tions may exceed thousands of atmospheres [i]. There is yet another interesting aspect of 
such problems - the need to intensify the destructive effects achieved in the hydrodynamic 
extraction of minerals and fracture of rocks and the development of progressive new methods 
of cutting materials. 

In order to protect structures from failure and select the proper materials and coat- 
ings, it is necessary to perform a detailed analysis of their deformation and fracture with 
different rates of interaction with liquids. The capabilities of empirical methods are ex- 
tremely limited, since these interactions are of a drop- or jet-mediated nature (with the jets 
being of the shaped charge type) and are highly localized - with a duration measured in 
microseconds. The results that have been obtained through experimentation are for the most 
part qualitative. Only the ablation rate in such interactions provides quantitative data 
from such studies [i, 2]. The possibilities of theoretical investigations are even more 
limited. In mathematical modeling the high-speed impact interaction of bodies with a liquid, 
it is necessary to consider the compressibility of the media, the propagation of shock waves 
(SW) in them, the nonlinear behavior of the materials (dependent on the loading rate), and 
the resistance of the materials to plastic shears. The presence of the free surface of the 
liquid - which changes during the interaction - complicates the solution of the problem [2, 3]. 

Only a small number of studies [2, 4-6, etc.] have numerically investigated features of 
the nonlinear deformation and fracture of bodies in such interactions with a liquid. All of 
them are based on simplifying assumptions made relative to the behavior of the media. How- 
ever, as was noted in [7], the use of such assumptions makes it possible to determine fea- 
tures of flow in the liquid that are important in determining the loading, deformation, and 
mode of failure of the given body. The most thorough studies of the dynamics of a drop liquid 
were made in [7], although they were limited to modeling flows in a liquid in the case of a 
collision with a nondeformable surface. 

The present investigation, being a continuation of [8, 9], numerically examines wave 
processes in a drop liquid and a deformable body during their high-speed collision. The 
results are obtained with allowance for the above-mentioned features of the behavior of the 
media on the basis of the finite differences method and a through computing scheme of the 
Lachs-Vandroff predictor-corrector type. The Boris -Book flux correction method [i0] is 
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